Connection-Oriented Ethernet for Delivery of Private Cloud Services

Ralph Santitoro
Director of Carrier Ethernet Market Development
Ralph.Santitoro@us.Fujitsu.com

February 23, 2012
Contents

- What problem are we trying to solve?
- Connection-Oriented Ethernet (COE)
 - Motivation for COE
 - COE Fundamental Characteristics
 - 6 Attributes of COE
- Private Cloud Service Delivery
 - COE Deployment Scenarios
Private Cloud Service Delivery for Large Enterprises

The Market Opportunity
Current Challenges using the Internet
% Spend of Multi-$B U.S. Firms on IT deployments

Private Cloud Service delivery over Carrier Ethernet WANs and Ethernet Services

Enterprise Cloud Service delivery Challenges

- Today, Internet is predominant WAN to deliver cloud services
 - Surprising, little attention paid to it by the Cloud Community

- Larger Enterprises hesitant to move mission-critical applications to the cloud when delivered via the Internet

Cloud Service Delivery Challenges over the Internet
- Security Vulnerabilities
- Performance
- Data Governance
- Regulatory Compliance

The WAN is critical for cloud service performance (SLAs)
Cloud Service Delivery via COE WANs

- Addresses Internet challenges for mission critical apps.
 - Using COE to connect to on-net private cloud services

- Generates additional telecom provider revenue
 - Private cloud services and Ethernet services with SLAs

Private Cloud Service Delivery via COE
- Secure
- Predictable Performance
- Control of Data Governance and Regulatory Compliance
Different Implementations of Carrier Ethernet

Connectionless Ethernet (CLE)
Connection-Oriented Ethernet (COE)
Connectionless Ethernet (CLE)

- When most think of Ethernet, they think of Ethernet LANs
 - Technically referred to as Connectionless Ethernet
 - Single User per Ethernet Interface
 - Network is inside a building

- CLE is also used in Carrier Networks
 - Subscriber sites connect to an Ethernet UNI
 - Multiple Users per Ethernet Interface (UNI)
 - Network is across a wide area
Challenges with Connectionless Ethernet (CLE) when used for WANs

- Non-Deterministic QoS and Traffic Patterns
 - Variable QoS performance (Packet Delay, Delay Variation, Loss)
 - Traffic paths vary due to spanning tree topology changes
 - Difficult to traffic engineer variable traffic paths

- Difficult to Guarantee Bandwidth
 - Multiple ingress and egress points in the network
 - Resulting in variable traffic paths
 - Oversubscribed bandwidth impacts committed (CIR) bandwidth

- Difficult to provide High Network Availability
 - Spanning Tree cannot meet demanding application requirements
 - G.8032 (ERP) as an STP replacement only works for ring topologies
 - Difficult to provide end-to-end Ethernet service protection

CLE requires technology augmentation to make it “Carrier Grade”
Connection-Oriented Ethernet (COE) The best of both worlds

Connectionless Ethernet
- Layer 2 Aggregation
- Statistical Multiplexing
- Flexible Bandwidth Granularity
- Cost Effectiveness

SONET/SDH
- Deterministic QoS
- Guaranteed Bandwidth
- 99.999% Availability
- Highest Security (Layer 1 service)

Connection-Oriented Ethernet for Delivery of Private Cloud Services

COE provides the Flexibility and Scalability of Ethernet with the Performance, Reliability and Security of SONET/SDH
What is Connection-Oriented Ethernet?

- High performance implementation of Carrier Ethernet
 - Used for P2P and P2MP metro and wide area networking

- Disables Ethernet bridging
 - No Spanning Tree Protocol
 - No MAC address learning/flooding

- Ethernet paths provisioned by Management System

- Implementations use “label-based” frame forwarding
 - Ethernet / VLAN Tag Switching: C-VIDs + S-VIDs
 - PBB-TE: BMAC Address + B-VID
 - MPLS-TP: MPLS label

COE technologies have been deployed for over 10 years
Different approaches to COE
Technology selection depends on what problem you trying to solve

MPLS-centric COE
- Static PW
- MPLS-TP

 - Ethernet
 - MPLS Pseudowire (PW)
 - MPLS Label Switched Path (LSP)

Ethernet-centric COE
- PBB-TE
- Ethernet Tag Switching

 - Ethernet

- **Optimized for Multi-service (ATM, FR, TDM, Eth, IP) Transport**
 - Three OAM Layers
 - Less optimal for Ethernet service delivery and transport

- **Standards Under Development**
 - G.8113.1 & G.8113.2 Service OAM
 - G.8131 & G.8132 Path Protection

- **Optimized for Ethernet / IP Service Delivery and Transport**
 - One OAM Layer
 - Less optimal for multi-service transport

- **Standardized Now**
 - Reuses existing Carrier Ethernet standards for SOAM & Protection

Ethernet-centric COE optimized for Ethernet/IP Service Transport
MPLS-centric COE optimized for Multi-service Transport
1. Ethernet Frames take a predetermined path
 - Guarantees Consistent Performance

2. Bandwidth Reserved per EVC
 - Using Connection Admission Control (CAC)
 - Also supports oversubscription
Focusing on Ethernet-centric Implementations of COE which are predominantly deployed today
Ethernet-centric COE Ecosystem
6 Attributes of Connection-Oriented Ethernet

Standardized Services
- EPL, Access EPL
- EVPL, Access EVPL

Deterministic QoS
- Lowest Packet Latency and Loss
- Bandwidth Resource Reservation

Security
- No Bridging: MAC DoS attacks mitigated
- Completely Layer 2: No IP vulnerabilities

Scalability
- Layer 2 Aggregation
- Statistical Multiplexing

Reliability / Availability
- G.8031 50ms EVC Protection
- 802.3ad UNI & ENNI Protection

Ethernet OAM
- 802.3ah Link Fault Mgmt.
- 802.1ag Service Fault Mgmt.
- Y.1731 Service Perform. Mgmt.
COE Resource Reservation

- **Bandwidth guaranteed in 1 Mbps (CIR) increments**
 - Bandwidth reserved at each network element across network path
 - For both Working and Protect Paths for a given EVC

Deterministic QoS
- Lowest Packet Latency and Loss
- Bandwidth Resource Reservation

CIR bandwidth guaranteed for each EVC
Each EVC traffic engineered to achieve QoS Objectives
Ethernet-centric COE Network and Link Protection

- **Link Protection via 802.3ad Link Aggregation**
 - Protection for UNIs and ENNIs

- **Network Protection via G.8031 Linear Path Protection**
 - Continuity Check Messages (CCMs) monitor the path’s health
 - If failure occurs, CCMs not received from Working Path
 - COE network element switches to Protect Path

Network protection can be applied to EVCs over any type of topology (linear, mesh, ring, etc)
Ethernet-centric COE Security: Comparable to SONET

- No MAC Address Vulnerabilities
 - Immune to MAC Address spoofing of Network Elements (NE)
 - Immune to MAC address table overflow DoS attacks in NEs

- No Spanning Tree Protocol (STP) Vulnerabilities
 - Immune to STP Denial of Service (DoS) attacks

- Immune to IP protocol vulnerabilities and attacks
 - Doesn’t use IP protocols

- Uses few protocols. IP and MPLS require many
 - Fewer protocols = Fewer network security vulnerabilities

COE provides security comparable to a Layer 1 service (like EoS)
Connection-Oriented Ethernet Use Cases for Private Cloud Service Delivery
MEF EVPL Service Use Case

- **Hub UNI at Cloud Service Provider Primary Data Center**
 - Aggregates all EVPL EVCs from Enterprise sites
 - Able to add additional Enterprise sites onto same hub UNI

- **Secondary data center reached through DC-to-DC EVPL EVC**

Solution Supports High Performance On-Net Cloud Bursting
MEF Access EPL Use Case

- **ENNI Provides Interconnections for:**
 - Enterprise Sites and Cloud Service Provider
 - Cloud Service Provider Data Centers
 - Internet connectivity to reach Public Cloud services

Ethernet Exchange Provider Enables Private Cloud Service Delivery through On-Net Interconnections at ENNI
Fujitsu COE Educational Resources

- **Connection-Oriented Ethernet (COE) Home Page**
 - http://tinyurl.com/6ax8ngo

- **Webinars**
 - COE: A No-Nonsense Overview
 - http://www.youtube.com/watch?v=b7jgDjBfJJl
 - Ethernet versus MPLS-TP for Connection-Oriented Ethernet
 - http://tinyurl.com/83n6esa

- **White Papers**
 - COE – Operational and Deployment Considerations
 - http://tinyurl.com/5ws8rf4
 - OpEx Benefits of Fujitsu Ethernet Tag Switching Implementation of COE
 - http://tinyurl.com/3n4bn8f
 - Ethernet Service OAM: Overview, Applications, Deployment, and Issues
 - http://tinyurl.com/5s7ax8t
 - Carrier Ethernet Essentials
 - http://tinyurl.com/7z3cwwk