Chip-Scale FBAR Oscillator for Data Communications

Stephen Gilbert, Sanjeev Gupta, Reed Parker, Rich Ruby, Julie Fouquet, and Lori Callaghan
Avago Technologies, San Jose CA

Andrew Seidel, Martha Small, and Steve Ortiz
Avago Technologies, Fort Collins CO
Co-Integration, Co-Design of Timing Function

There has been strong, evolutionary pressure to integrate high quality clocking and frequency sources into the ASIC package.

FBAR Chip Scale Packaged (CSP) Oscillator:
- Very small size
- Low jitter
- High native frequency (500MHz to 5GHz)

The FBAR CSP oscillator is a high quality frequency and timing source. Because it is so small and thin, it can be integrated within a typical BGA ASIC package.
Leveraging FBAR Filter Technology

Low Jitter FBAR CSP Oscillator

Evaluating a Copper Link

Adding Optics for a Full System Test

Summary
Physics of Film Bulk Acoustic Resonators (FBAR)

Piezoelectric FBAR Resonator

Mo/AlN/Mo free-standing membrane

Au Pad

Si etch pit

Cross-Section

Electrical Analog

Sputter-deposited AlN

Top Electrode

Bottom Electrode

AIN

C_{MOTIONAL}

F_{MOTIONAL}

C_{SHUNT}

L_{MOTIONAL}
Band 7 LTE Co-Existence Duplexer (2.0 X 1.6 mm²)

- LTE Band-7 Duplexer
- Designed for ISM band (WiFi) coexistence
- Multiple Design Wins with our WiFi Coexistence Filter

63% or more passes thru the two filters

Only 3 - 10 ppm incident power leaks from one band to the other

Production Sample Measurements over Temperature
Miniaturization Through Microcap Wafer-Level Packaging

- Cap Wafer
- Bonded Wafer
- Individually Sealed Filters
- Microcap’d die ready for assembly in modules

- Wafer to wafer bond
- Wafer-scale batch process
- Assembly can be wire bond or SMT
- Sold as die or integrated into module

For molded chip-on-board (MCOB) package assembly
Chip-Scale Packaged FBAR Oscillator

Technology Features:
- High frequency (500MHz to 5GHz), high Q, FBAR resonator with temperature compensation
- Oscillator circuitry (Bipolar, CMOS, SiGe BiCMOS, etc) integrated into lid

Best in Class Performance:
- Jitter <10 fsec at GHz frequencies, with current consumption <20 mA
- Differential (or single-ended) output

Proven Manufacturability:
- Borrows from standard microcap, FBAR, and IC processes
FBAR Oscillator Chip-Scale Package Design

Can be integrated directly into a customer’s ASIC package

3 x 2 pad array (6 pin package)
Cu/ENIG pads for flip-chip
Form-factor: 1.07 x 0.90 x 0.23 mm
Most oscillator designs require 3 to 4 external SMD’s
Value Proposition of FBAR Chip-Scale Oscillator

- High native frequency (500 MHz to 5 GHz): 10 to 100X higher than Quartz.

- Extremely low jitter (< 10 fsec): 10 to 100X better than Quartz.

- Very small chip-scale hermetic package: 10X smaller than Quartz.

- Exceptional vibration performance (< 1ppb/g): nearly 10X better than Quartz.

- High volume manufacturing, with excellent reliability.
Why Low Phase Noise Oscillators?

- Upcoming communication systems will be more difficult and expensive to design (e.g. 100GE):
 - Board materials, routing, connectors, power supplies
 - Interoperability, standards, margin at high speeds
 - Labor and schedule, expertise

- Temporal link budgets can be relieved by starting with a cleaner reference oscillator:
 - Spend the difference in other areas
 - Reduce cost, and increase reliability
 - Higher modulation complexity demands cleaner oscillators
FBAR Oscillator Phase Noise: Before & After Divide by 4

FBAR oscillator native frequency is 2577.4 MHz. Used an external PECL divide-by-four chip to divide frequency down to 644 MHz.

Single Side Band Phase Noise (dBc/Hz)

- < 10 fsec RJ at 2577 MHz
- ~40 fsec RJ at 644 MHz

Supportable by typical ASIC on-die clock trees.

At native frequency of 2577 MHz, random jitter is <10 fsec.

After dividing by four to 644 MHz, random jitter is ~40 fsec.
FBAR oscillator produces 34X less RJrms.

Dramatically better in mid-range and far-from-carrier.

Close-in performance is less of an issue for modern PLL-based serial communication systems.
Measuring SerDes TX Performance (at 13 GHz)

- Evaluated raw TX performance of a production SerDes ASSP

- Each oscillator programmed to 644 MHz as reference clock for an Avago AVSP-8801 8-channel 1-28 Gbps re-timer

- DIV40 to produce bit rate of 25.78125 Gbps, 0101 pattern (12.89 GHz)

- Using Agilent E4448A spectrum analyzer with phase noise module
Comparison of SerDes TX Driven by Three Reference Oscillators

Freq = 13 GHz

The trend and advantage remain with the FBAR oscillator:
- We demonstrate a 13 GHz clock with only 179 fsec of RJ_{rms}
- On-die effects (power supply and switching noise) add to the jitter
- Approx 2X better jitter even after 40X multiplication
- Future co-design can recover some of FBAR oscillator low jitter
Impact of Reference Oscillator on SerDes TX Jitter Performance

- Key Question: is jitter-performance improvement in reference oscillator lost through PLLs in SerDes and Optical Converters?

Tests comparing FBAR oscillator to commercial oscillators are compelling: jitter improvement ranges from ~15 to 40%.

On-die effects of the target application do not swamp out the benefits of the cleaner source.

Short Answer → Reference Clock Jitter performance matters
HiFi-25GEM test platform:
- 15 channel 1-28 Gbps AVSP-521
- 12 channel pre-alpha 25.78 Gbps embedded optics platform
- Variety of copper channels (Megtron 6)
- Optical ribbon cable (1m) & FO (100m)
- Power / Ethernet-control / misc

Experiments (Goal: CDRs Off for Power Savings)
- Clock from Si5338 vs FBAR oscillator
- PRBS31 at 26 Gbps, aggressors ON
- Various copper and optical channel combinations
- Optical CDRs ON and OFF
FFE, DFE, CTLE, Pre-Amps, and PLL settings are optimized in the SerDes chip prior to each run.
Overview of Full System Test

- Measured eye diagram (CDF) at final receiver in chain, comparing FBAR oscillator to si5338:
 - Receiver stress tolerance including pre-amp, DFE, etc
 - Modern SerDes on-die functions allow these evaluations in a closed-loop system

- Horizontal and vertical bathtub curves:
 - Projected bit error rates, eye closure, RJ, DJ, RVN, DVN
 - Using Dual-Dirac model, in Q-function space, as correct statistical method
 - Even so, this technique has limited accuracy (but avoids multi-day bit error tests, so worth it)
Eye Diagram Measurements
(1e9 samples / pxl)

RX CDR ON, TX CDR OFF

FBAR Oscillator
Q=7 Extrapolation → 165 mUI RJ
Si5338
Q=7 Extrapolation → 82 mUI RJ

All CDRs OFF

FBAR Oscillator
Q=7 Extrapolation → 109 mUI RJ
Si5338
Q=7 Extrapolation → 78 mUI RJ
Horizontal Bathtub Extrapolations
(1e9 samples / pxl, extrapolate to Q = 7 or BER = 1e-12)

RX CDR ON, TX CDR OFF

FBAR Oscillator

165 mUI RJ (at Q = 7)

Si5338

82 mUI RJ (at Q = 7)

With RX CDR on, RJ is 2x better with FBAR oscillator.

All CDRs OFF

FBAR Oscillator

109 mUI RJ (at Q = 7)

Si5338

78 mUI RJ (at Q = 7)

With all CDRs off, RJ is 40% better with FBAR oscillator.
Summary

- We have demonstrated an ultra-small, low-jitter CSP oscillator based on FBAR. Leverages high volume manufacturing.
- We have evaluated the FBAR oscillator in a 26 GHz optical module with one or both CDRs turned off.
- *Compelling* jitter performance advantages were demonstrated – all the way through a complex real-world communication link.

Potential to **Co-Locate** low noise Reference Clock with ASIC:
- Reduces SJ, DCD, and RJ ‘jitter amplification’
- Eliminates possibility of ‘jitter pick-up’ from adjacent data lines

Potential for **Co-Design** with ASIC:
- Power savings, PLL design
- On-chip clock tree design (1.25 GHz, 2.5 GHz oscillator frequency)